

Армянская Атомная Электростанция

Управление отработавшим ядерным топливом на Армянской АЭС

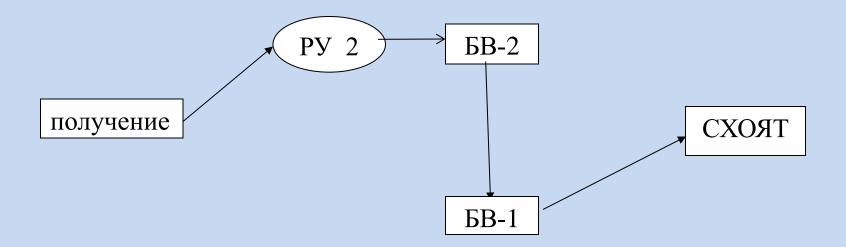
Семинар «Обмен опытом и создание условий по утилизацию и выводу из эксплуатации ядерных энергетических установок, включая обращение с РАО в государствах участниках СНГ Москва, 25-26 июля 2018 года

Ашот Хачатрян

Начальник лаборатории ядерного топлива Отдела ядерной безопасности и надежности Армянской АЭС

Общие сведения

- > Ядерные установки в РА
 - ✓ Армянская АЭС
 - **✓** Сухое хранилище отработавшего ядерного топлива (СХОЯТ)
- ▶ Армянская АЭС находится в 28 км от столицы РА г. Еревана и включает в себя 2 энергоблока ВВЭР-440/270.
- **>** Блок №1 введен в эксплуатацию в 1976 году
- **>** Блок №2 в 1980 года
- В апреле 1993 года были начаты работы по повторному пуску блока №2
- В нолоре 1995 года блок № 2 снова был введен в эксплуатацию
- > Блок №1 находится в режиме длительного останова


Общее описание установок

> Сухое хранилище отработавшего ядерного топлива (СХОЯТ)состоит из 2 очередей: √ I очередь – 11 Горизонтальных модулей хранения (ГМХ), √ II очередь состоит из 2 частей √ I часть — 12 ГМХ; √11 4acmb - 12 FMX.

Ядерная деятельность в РА

- > Получение свежих топливных кассет
- Использование топливных кассет в РУ-2
- Хранение отработавших топливных кассет в бассейнах выдержки
- Хранение отработавших топливных кассет в СХОЯТ

Общая схема движения ядерного топлива

Топливные кассеты

До 2009 года — 1,6%, 2,4% и 3,6% Допустимая глубина выгорания — 42 МВт.сут/кгU

В течении 2009-2015 г.г. переход на 3,82% Допустимая глубина выгорания – 47,4 МВт.сут/кгU

Три группы отработавших топливных кассет

Начальное обогащение, не более 3,6% І группа Глубина выгорания, не более 42 МВт.сут/кгU Время выдержки, не менее 5 лет

П группа Начальное обогащение, не более 3,6% Глубина выгорания, не более 47,4 МВт.сут/кг Время выдержки, не менее 12 лет

Начальное обогащение, не более 3,8% Глубина выгорания, не более 47,4 МВт.сут/кг Время выдержки, не менее 10 лет

Продление срока эксплуатации (ПСЭ)

Отчет

«Анализ и оценка возможности временного хранения отработавшего ядерного топлива, образующегося в период дополнительного срока эксплуатации блока № 2 ААЭС»

«Концепция ААЭС к подходам по обращению с отработавшим ядерным топливом во время дополнительного срока эксплуатации энергоблока № 2»

Концепция

Цели:

ЭОценка количества и характеристики ОЯТ во время продленного срока эксплуатации и наличие свободных объемов в хранилищах

ЖПересмотра действующих подходов ААЭС по обращению с ОЯТ ("мокрое хранение" в бассейнах выдержки, перемещение между 2БВ и 1БВ, подготовка к долговременному хранению, транспортировка за пределы АО, долговременное хранение в специальных сооружениях)

➤ Составления перечня соответствующих мероприятий по обеспечению хранения ОЯТ, уточнения сроков их выполнения и источников финансирования

Концепция

Результаты:

Жоризонтальные модули второго здания второй очереди СХОЯТ будут полностью заполнены в 2026 году

Учитывая плановое расчетное количество отработавших топливных кассет (ежегодно выгружаемых из активной зоны реактора (таблица 1) СХОЯТ-3 полностью будет заполнен в 2035 году

Усуществующая на ААЭС система хранения и обращения с отработанным ядерным топливом обеспечивает временное хранение ОЯТ и его своевременную отгрузку в СХОЯТ в период до 2035 года

≽Третью очередь СХОЯТ (СХОЯТ-3) необходимо построить в 2025 году и ввести в эксплуатацию в 2026 году

№ 2034 году необходимо завершить строительство нового хранилища для ОТВС и вводить его в эксплуатацию в 2035 году

Мероприятия

№ № п/п	Наименование мероприятий	Планируемая дата выполнения работ	Источник финансирования
1.	Обоснование временного безопасного хранения ОЯТ с начальным средним обогащением 3.8% по U^{235} с глубиной выгорания 47.4 МВт сут/кг U в уплотненных стеллажах 2БВ.	До ППР 2019 года	В рамках программы ДСЭ
2.	Замена существующего НЯС 2 БВ на стеллажи уплотненного хранения топлива (СУХТ)	ППР-2019 год	В рамках программы ДСЭ
3.	Построить третью очередь СХОЯТ.	2025 год	ААЭС
4.	Построить новое хранилище для ОТВС.	2034 год	ААЭС

Отчет

Цели

анализ возможности обеспечения временного безопасного хранения отработавшего ядерного топлива в период дополнительного срока эксплуатации блока № 2 ААЭС, который включает:

ЭОценку количества и характеристики ОЯТ образующегося в период дополнительного срока эксплуатации

Эоценку и обоснование возможности безопасного хранения ОЯТ образующегося в период дополнительного срока эксплуатации

→ Обоснование и разработка мероприятий по обеспечению хранения ОЯТ образующегося в период дополнительного срока эксплуатации

Отчет

Результаты

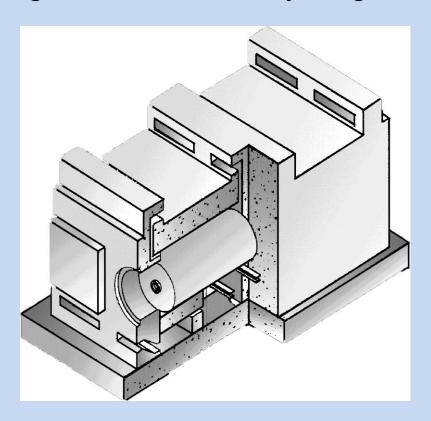
- 1. Характеристики ОЯТ отправляемые в СХОЯТ для временного хранения находятся в допустимых пределах
- 2. Количество свободных ячеек в 2БВ необходимое для полной выгрузки активной зоны реакторной установки №2 постоянно обеспечивается
- 3. Состояние конструкций хранилищ, систем и оборудования задействованных в работах по обращению с отработавшим ядерным топливом работоспособные, исправные, соответствуют требованиям КД и эксплуатационной документации
- 4. После модернизации рабочего стеллажа 2БВ на СУХТ и ввода в эксплуатацию третьей очереди СХОЯТ (СХОЯТ-3) существующая на ААЭС система хранения и обращения с отработанным ядерным топливом обеспечивает временное хранение ОЯТ и его своевременную отгрузку в СХОЯТ в период до 2035 года
- 5. После ввода в эксплуатацию нового хранилища для ОЯТ (хранилища вертикального типа) обеспечивается временное безопасное хранение 690 штук (расчетное количество) ОЯТ

Стратегия безопасного управления РАО и ОЯТ в РА

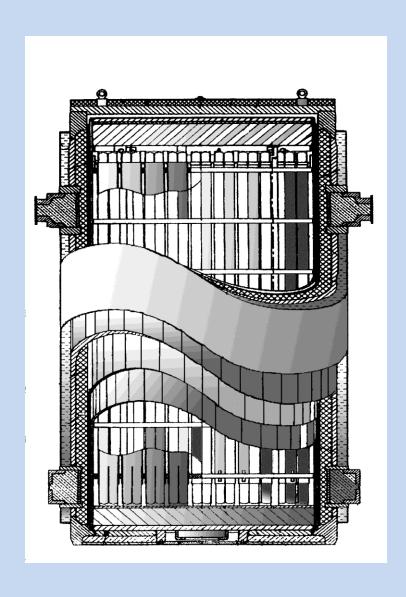
- 1. Описание текущего состояния
- 2. Необходимость принятии стратегии
- 3. Система управления РАО
- 4. Задачи стратегии и пути их решения
- 5. Основные принципы безопасного управления ОЯТ
- 6. Основные трудности и препятствия
- 7. Мероприятия по осуществлению стратегии и финансирование
- 8. Ожидаемые результаты

5. Основные принципы безопасного управления ОЯТ

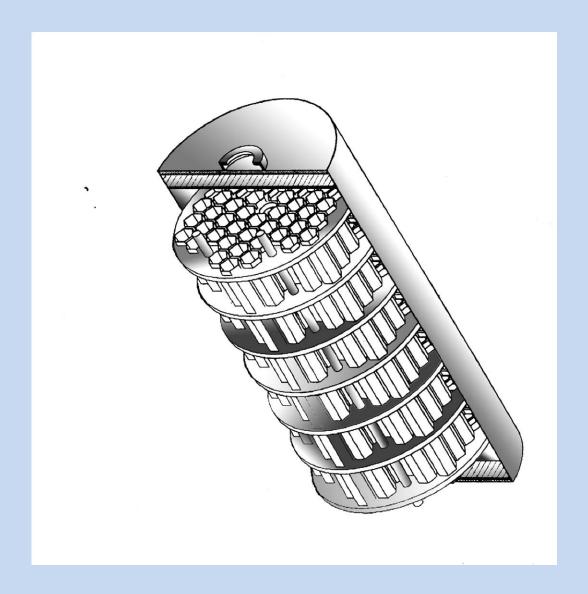
- 5.1 Требования к безопасному управлению ОЯТ установлены в следующих документах:
- ➤Объединенная конвенция о безопасности обращения с отработавшим топливом безопасности обращения с радиоактивными отходами;
- ➤ Стандартом МАГАТЭ по безопасности SSG-15:
- >> Законом РА «О безопасном использовании атомной энергии в мирных целях»


5. Основные принципы безопасного управления ОЯТ

- 5.2 Исходя из предыдущего пункта, безопасное управление в РА должно удовлетворять следующим требованиям:
- ≻обеспечение подкритичности и отвода тепла;


- ▶обеспечение образования минимального количества РАО;
- учитывать взаимосвязь различных этапов управления ОЯТ;
- ≻обеспечение эффективной защиты персонала, населения и окружающей среды
- ▶учитывать биологические и химические опасности, возникающие при управлении ОЯТ;
- ▶избегать такой деятельности, разумно прогнозируемые последствия которых для следующих поколений могут быть тяжелее, чем для настоящих поколений;
- ▶хранилища ОЯТ должны обеспечить безопасное и надежное хранение до их окончательного захоронения или отправки на переработку;

- 5. Основные принципы безопасного управления ОЯТ
- 5.3. Хранение ОЯТ
 - ≽хранение ОЯТ в БВ;
 - ▶хранение ОЯТ в СХОЯТ
- 5.4. Захоронение ОЯТ
- 5.5 продление срока эксплуатации блока


Горизонтальный модуль хранения (ГМХ)

Транспортный контейнер

Сухотарный защитный пенал (СЗП)

Корзина СЗП

СПАСИБО ЗА ВНИМАНИЕ