

ДЕТЕКТИРОВАНИЕ НЕЙТРОНОВ В ШИРОКОМ ДИАПАЗОНЕ ЭНЕРГИЙ С ИСПОЛЬЗОВАНИЕМ ДЕТЕКТОРОВ НА ОСНОВЕ СЦИНТИЛЛЯТОРА GAGG:Ce

Коржик Михаил Васильевич, Лобко Александр Сергеевич, Максименко Сергей Афанасьевич, Мечинский Виталий Александрович

НИУ НИИ ядерных проблем Белорусского государственного университета, Минск, Беларусь

Москва, 2024

Возрастающая потребность применения детекторов нейтронов

Природа атмосферных явлений

Солнце и космическое излучение. Нейтрино, антинейтрино

Система безопасности активного досмотра

Планетарная ядерная спектроскопия. Нейтронный каротаж

Идентификация взрывчатых и делящихся веществ

коржик м. в.-12-3-2024

Типы детекторов нейтронов

Изотоп	Ядерная реакция	Природное содержание изотопа, %	Сечение взаимодействия с тепловыми нейтронами, барн
³ He	³He + n → ³H+ p	0,00014 Нарабатывается вследствие реакции: ${}_{1}^{3}H \rightarrow {}_{1}^{3}He + e^{-} + \nu$	5330
⁶ Li	6 Li + n $ ightarrow$ 3 H + $lpha$	7,4	940
¹⁰ B	^{10}B + n $ ightarrow$ ⁷ Li + $lpha$	19,8	3840
¹² C	^{12}C + n \rightarrow ^{9}Be + α	98,93	3,4

Пример гелиевого счётчика с модератором нейтронов

Сцинтилляционный детектор

Камера деления

коржик м. в.-12-3-2024

Полупроводниковый детектор

Сцинтилляционные материалы на основе редкоземельных элементов для регистрации нейтронов

Химическая формула	Световой выход, (ф/МэВ)	Кинетика высвечивания, нс	Плотность, г/см ³	Z _{eff}	Резонансный интеграл сечения радиационного захвата нейтронов матрица образующего элемента, барн	Сечение радиационного захвата тепловых нейтронов матрица образующего элемента, барн
Lu₃Al₅O₁₂:Ce (LuAG:Ce)	24000	55-65	6,67	62,9	900 (Lu)	77 (Lu)
Gd ₃ Al ₂ Ga ₃ O ₁₂ :Ce (GAGG:Ce)	58000	90-170	6,2	54,4	390 (Gd) / 18,7(Ga)	49000 (Gd) / 2,9 (Ga)
Lu₂SiO₅:Ce (LSO:Ce)	~30000	40	7,4	66,4	900 (Lu)	77 (Lu)
Gd₂SiO₅:Ce (GSO:Ce)	12500	56;600	6,71	59,4	390 (Gd)	49000 (Gd)
Lu _{2(1-x)} Y _{2x} SiO ₅ :Ce (LYSO:Ce)	32000	30-35	7,2	63-65	900 (Lu) / 1,0 (Y)	77 (Lu) / 1,0 (Y)
GdBr ₃ :Ce	44000	20 (26%), 212 (65%), 13500 (9%)	4,55	52,4	390 (Gd) / 90(Br)	49000 (Gd) / 6,8 (Br)

GdBr₃

- высокий световыход
- негигроскопичен
- отсутствует природная радиоактивность

коржик м. в.-12-3-2024

Сечение взаимодействия нейтронов

Принцип детектирования тепловых нейтронов материалами,

содержащими гадолиний

Амплитудный спектр у-квантов реакции ¹⁵⁷Gd (n,y) ¹⁵⁸Gd в металлическом гадолинии измеренный с детектором Nal(TI)

Гистограмма распределения вероятности испускания уквантов разной множественности в ходе реакции Gd(n,y)

 $^{155}_{64}Gd + ^{1}_{0}n \rightarrow ^{156}_{64}Gd + \gamma$ 8,5358 M₃B

 ${}^{157}_{64}Gd + {}^{1}_{0}n \rightarrow {}^{158}_{64}Gd + \gamma$ 7,937 M₃B

8+

6+

 $^{4+}$

965.134

584.715

288.187

TTT

1111

THE

1111

1111

380.419

(330.18)

 $\Omega_{\rm w} = 0.0236$

H

296.528

(246.29)

 $\alpha_{\rm w} = 0.0478$

199.217

Сечение Процентное взаимодействия с Изотоп содержание в тепловыми природном Gd, % нейтронами, барн 152 739,76 0.2 153 22379 0 86 154 2,18 155 60991 14,8 156 1,799 20,47 157 254840 15,65 158 2,222 24,84 160 1,424 21,86

156 Gd 158 Gd Схема нижних энергетических уровней изотопов ядер

¹⁵⁶Gd и ¹⁵⁸Gd

904.12

539.022

365.098

(314.86)

 $\alpha_{\rm w} = 0.0264$

277.564 (227.32)

 $\Omega_{v} = 0.0581$

1111

1111

1111

1118 111

111 1110 111

Радиационная стойкость к различным компонентам ионизирующего излучения

Оптическое пропускание кристалла GAGG:Се,Мg до (зелёная) и после облучения ү-квантами поглощённой дозы 120 кГр (красная)

Временные константы кинетики высвечивания и их весовые коэффициенты, нс (%)	33 (30), 86 (56), 130 (14)
СТ R (+20 °C) , пс	165±3
Энергетическое разрешение, %	7,6
Световой выход, фотонов/МэВ	39000
Максимум спектра испускания, нм	540
dk, м⁻¹(поглощённая доза при облучении ү-квантами 120 кГр)	0,6 ± 0,3

Достигнутые параметры материала позволили приступить к созданию детекторов нейтронов на его основе

коржик м. в.-12-3-2024

Оптическое пропускание кристалла GAGG:Ce,Mg до (звёздочки) и после (кружки) облучения протонами с флюенсом 3,1·10¹⁵ протон/см² Отклик детектора на основе кристалла GAGG к Am-Be источнику нейтронов (сертифицированный стенд для измерения нейтронов в ATOMTEX, Беларусь)

Амплитудный спектр отклика к Am-Be источнику нейтронов

Диапазон энергии ү- квантов, кэВ	Быстрые нейтроны		Тепловые нейтроны		
	Чувствительность (нейтрон/см²с)	Эффективность регистрации нейтронов (%)	Чувствительность (нейтрон/см²с)	Эффективность регистрации нейтронов (%)	
45-305	0,182	9,29	1,64	64,6	
45-1000	0,298	15,2	2,04	80,3	

коржик м. в.-12-3-2024

Отклик детектора к импульсному нейтронному генератору 14.6 МэВ и разделение по форме импульса фона и сигналов быстрых нейтронов

Амплитудные спектры, измеренные с помощью сцинтиллятора GAGG:Ce при облучении генератора нейтронов (синяя линия). Зеленой и фиолетовой линиями показаны спектры, полученные с помощью фильтров Cd 1 мм и B4C 5 мм соответственно, установленных между детектором и генератором нейтронов.

Разделение по форме импульса гамма-квантов и вторичных частиц (α и р), образованных нейтронами

Трехмерная гистограмма импульсов сцинтилляционного кристалла GAGG:Ce, зарегистрированных при облучении нейтронами с энергией En = 14,6 МэВ.

Выделение сигнала, обусловленного нейтронами на фоне ү-квантов

Результаты GEANT4 моделирования

Оценка среднего числа частиц разных типов, испускаемых при попадании одного нейтрона с энергией En в GAGG:Ce 24×24×40 мм (без поправки на эффективность регистрации). Результаты моделирования энергетического распределения вторичных α-частиц и протонов в GAGG:Ce при облучении нейтронами с энергией 14,6 МэВ.

10000

15000

E (keV)

Сравнивая данные моделирования можно утверждать, что сигналы от вторичных протонов должны доминировать в спектре отклика заряженных частиц, при этом они должны быть сдвинуты в низкоэнергетическую область относительно α-частиц. Это хорошо коррелирует с результатами измерений и разделением сигналов по форме импульса: от сигналов γ-квантов отделяются два пика, которые можно отнести к вторичным α-частицам и протонам, соответственно.

ALPHA

-PROTON

20000

25000

Регистрация релятивистских нейтронов методом времени пролета (time-of-flight)

$$E_n = \frac{m_n c^2}{1 - \sqrt{\left(\frac{S_n}{t_n \cdot c}\right)}} - 1$$
, где

- m_n масса покоя нейтрона,
- с скорость света,
- Е_n кинетическая энергия нейтрона,
- S_n длина пролёта,
- t_n время пролёта нейтрона

- 64 GAGG кристаллов (3x3x40 мм3)
- Материал отражателя: MYLAR®
- Оснащён 64 SiPM-ами
- Иммерсионный слой Baysilone® M 300.000

Матрица GAGG в алюминиевом корпусе

коржик м. в.-12-3-2024

Система сбора данных

Получение нейтронов высоких энергий

Энергетические спектры нейтронов, испускаемых свинцовой мишенью при различной толщине мишени и облучении протонами 220 МэВ.

Моделировалось распределение нейтронов по энергии и углам вылета за пределами мишени размером 10×10×6 см. Нейтроны - от (p,n)-реакции в мишени, Ep = 220 МэВ, углы указаны относительно исходного направления пучка протонов.

Neutrons

Результаты GEANT4 моделирования

Смоделированная зависимость энергии нейтронов и ү-квантов от времени регистрации в объеме **матрицы** детектора. Свинцовая мишень размерами 10×10×6 см находилась на расстоянии 0,5 м.

Восстановление спектра излученных нейтронов на короткой базе 0.5 м

Восстановленный энергетический спектр нейтронов в сравнении с результатами моделирования GEANT4. Столбики погрешностей рассчитывались для оценки фиксированного временного разрешения 1 нс (с учетом релятивистских поправок).

Матрица GAGG:Се может использоваться для регистрации нейтронов в широком диапазоне энергий. Исследована возможность времяпролетной регистрации быстрых нейтронов с помощью пиксельного детектора на основе сцинтилляционного кристалла GAGG:Се. Анализ полученных данных демонстрирует способность прототипа различать по времени пролета быстрые нейтроны от сопутствующих ү-квантов и эпитермальных нейтронов.

ПРИЛОЖЕНИЕ КОМПЕТЕНЦИЙ НИУ НИИ ЯП В СОЗДАНИИ УСТАНОВОК

- В рамках компетенций, развитых в НИИ ЯП БГУ по детектированию нейтронов, НИИ ЯП может принять участие в качестве соисполнителя по выполнению пункта 4. Проекта программы "Экспериментальное оснащение реактора МБИР".
- 2. Мы заинтересованы в кооперации, предполагающей широкое участие специалистов и организаций РБ в создании экспериментальных установок и их эксплуатации.
- 3. Готовы выступить соисполнителем по разработке и организации производства на территории РФ или РБ следующего измерительного оборудования:

3.1 Разработка линейки детекторов нейтронов, от тепловых до эпитермальных, на основе элементной базы, выпускаемой в РФ и РБ, создание прототипов и их испытание.

3.2 Разработка прямопоказывающего носимого индикатора нейтронного излучения на на основе элементной базы, выпускаемой в РФ и РБ, создание прототипов и их испытание.

3.3 Разработка прямопоказывающего носимого дозиметра тепловых нейтронов на основе элементной базы, выпускаемой в РФ и РБ, создание прототипов и их Испытание.